

FATO Medicina

MONITORIA - QUIMICA (Matheus Sacomaní/Laís Gonçalves)

O1. UNEMAT - Um jovem comprou um produto veterinário para eliminar os carrapatos do seu cachorro. Ao ler a bula, ele tomou conhecimento que o princípio ativo do produto é relativamente tóxico, então ele seguiu as orientações do fabricante para que seu animal de estimação não fosse envenenado. Na bula continha as seguintes informações:

Cada 100 mL contém:

O produto deve ser usado da seguinte maneira

Indicação	Volume do Produto	Volume de água
Eliminação de carrapatos	2ml	1 litro

Considerando que o jovem preparou a solução em um balde com 5 litros de água, seguindo as instruções de uso, a concentração final em mg/L do princípio ativo e o fator de diluição aplicado foram:

- a) 0,25 mg/L e 1:500
- d) 25 mg/L e 1:250
- b) 250 mg/L e 1:500
- e) 0,025 mg/L e 1:500
- c) 2,50 mg/L e 1:250

OZ. UNEMAT – O coeficiente de solubilidade pode ser definido como sendo a quantidade máxima de um soluto capaz de ser dissolvida por uma determinada quantidade de solvente, sob determinadas condições de temperatura e pressão.

Sabendo-se, então, que o coeficiente de solubilidade do $K_2Cr_2O_7$ é de 12,0 gramas em 100 mL de água à T=20°C, que tipo de sistema será formado quando forem adicionadas 120 gramas de $K_2Cr_2O_7$ em 600 mL de água à T=20°C?

- a) Um sistema heterogêneo, com 48 gramas de K₂Cr₂O₇ como precipitado (corpo de fundo).
- b) Um sistema homogêneo, com 48 gramas de K₂Cr₂O₇ dissolvidas completamente.
- c) Uma solução insaturada.
- d) Um sistema heterogêneo, saturado, com volume final igual a 820 mL.
- e) Um sistema homogêneo onde 120 gramas de $K_2Cr_2O_7$ foram completamente dissolvidas.
- D3. ENEM Ao colocar um pouco de açúcar na água e mexer até a obtenção de uma só fase, prepara-se uma solução. O mesmo acontece ao se adicionar um pouquinho de sal à água e misturar bem. Uma substância capaz de dissolver o soluto é denominada solvente; por exemplo, a água é um solvente para o açúcar, para o sal e para várias outras substâncias. A figura a seguir ilustra essa citação.

Suponha que uma pessoa, para adoçar seu cafezinho, tenha utilizado 3,42 g de sacarose (massa molar igual a 342 g/mol)

para uma xícara de 50 ml do líquido. Qual é a concentração final, em mol/l, de sacarose nesse cafezinho?

a) 0,02 b) 0,2 c) 2 d) 200 e) 2000

Q4. ENEM - O soro fisiológico é uma solução aquosa de cloreto de sódio (NaCl) comumente utilizada para higienização ocular, nasal, de ferimentos e de lentes de contato. Sua concentração é 0,90% em massa e densidade igual a 1,00 g/mL.

Qual massa de NaCl, em grama, deverá ser adicionada à água para preparar 500 mL desse soro?

a) 0,45 b) 0,90 c) 4,50 d) 9,00 e) 45,00

05. UNEMAT - Um carro flex de marca X tem um reservatório de combustível com capacidade para 50 litros. Considere que há ainda 60% de combustível com uma mistura álcool/gasolina, sendo que 15% é de álcool. Deseja-se completar o tanque com uma mistura gasolina/álcool de modo que a mistura resultante tenha 20% de álcool. Considere o álcool e a gasolina, em sua composição, 100% puros, isto é: não há álcool na gasolina e tampouco gasolina no álcool. O percentual de álcool que deve ser acrescentado para se obter a mistura desejada é:

a) 27,5% b) 20% c) 40,5% d) 25% e) 20,9%

O6. ENEM - A varfarina é um fármaco que dimiui a agregação plaquetária, e por isso é utilizada como anticoagulante, desde que esteja presente no plasma, com uma concentração superior a 1,0 mg/L. Entretanto, concentrações plasmáticas superiores a 4,0 mg/L podem desencadear hemorragias. As moléculas desse fármaco ficam retidas no espaço intravascular e dissolvidas exclusivamente no plasma, que representa aproximadamente 60% do sangue em volume. Em um medicamento, a varfarina é administrada por via intravenosa na forma de solução aquosa, com concentração de 3,0 mg/mL. Um indivíduo adulto, com volume sanguíneo total de 5,0 L, será submetido a um tratamento com solução injetável desse medicamento.

Qual é o máximo volume da solução do medicamento que pode ser administrado a esse indivíduo, pela via intravenosa, de maneira que não ocorram hemorragias causadas pelo anticoagulante?

a) 1,0 Ml b) 1,7 mL c) 2,7 mL d) 4,0 mL e) 6,7 mL

07. UNEMAT – Foram retirados 50 mL de uma solução estoque de ácido acético (CH₃COOH) e diluídos em água para 250 mL. 25 mL dessa solução diluída consumiu 25 mL de uma solução 0,1 mol/L de NaOH para neutralizar o ácido.

Qual o teor de ácido acético da amostra?

(Dados: C=12; O=16; H=1)

a) 1,3 % b) 0,4 % c) 3,0 % d) 5,7 % e) 10,1%

DE. SÃO LEOPOLDO MANDIC - O hipoclorito de sódio destacase entre as diferentes substâncias irrigadoras no tratamento de canais radiculares. Comercialmente são oferecidos produtos com concentrações de hipoclorito de sódio que variam de 0,5% a 6% em massa. A escolha da concentração dependerá do tipo de tratamento a ser realizado. Soluções de hipoclorito de sódio nas suas diferentes concentrações

DENOMINAÇÃO	CARACTERÍSTICAS	
Licor de Labarraque	Solução de hipoclorito de	
	sódio a 2,5%	
Soda Clorada	Solução de hipoclorito de	
	sódio de concentração	
	variável entre 4 e 6%	

Supondo que, em uma situação de emergência, seja necessário preparar 30 mL de licor de Labarraque, a partir de solução clorada

a 6%, qual é a quantidade de licor, em mL, que deve ser diluída em água até que se atinja o volume final de 30 mL?

Dados: Suponha que a densidade de ambas as soluções seja de 1g/cm3.

a) 2,5 b) 6 c) 10 d) 12,5 e) 25

09. ALBERT EINSTEIN - Para determinar a pureza de uma amostra de ácido sulfúrico (H_2SO_4), uma analista dissolveu 14,0 g do ácido em água até obter 100 mL de solução. A analista separou 10,0 mL dessa solução e realizou a titulação, utilizando fenolftaleína como indicador. A neutralização dessa alíquota foi obtida após a adição de 40,0 mL de uma solução aquosa de hidróxido de sódio (NaOH) de concentração 0,5 mol.L $^{-1}$. O teor de pureza da amostra de ácido sulfúrico analisado é, aproximadamente:

a) 18,0 %. b) 50,0 %. c) 70,0 % d) 90,0 %.

10. USF - O soro caseiro é uma solução aquosa que recria de forma bastante aproximada a concentração de sais e açúcares de nosso organismo. É um tratamento bastante rápido contra desidratação do organismo ocasionada, por exemplo, por infecções estomacais ou sudorese acentuada. Sua preparação é dada pela dissolução de 3,5 gramas de sal de cozinha e 20 g de acúcar comum para 1,0 L de solução.

Sobre os aspectos físico-químicos do sistema preparado, observa-se que

- Considere que foram utilizados exatos um litro de água (dH2O = 1,0 g.mL⁻¹) para preparação dessa solução.
- Considere que o sal de cozinha é o NaC ℓ e o açúcar comum é o $C_{12}H_{22}O_{11}$.
- Dados valores de massas atômicas em g.mol $^{-1}$. H = 1,0; C = 12,0; O = 16,0; Na = 23,0 e C ℓ = 35,5.
- a) Não seria possível a condução de corrente elétrica por essa solução.
- b) A concentração molar de sacarose é superior à concentração molar do cloreto de sódio.
- c) A pressão osmótica decorrente da dissolução da sacarose é superior à exercida pelo cloreto de sódio.
- d) A fração molar da água, no soro caseiro, é de aproximadamente 0,997.
- e) O título (m.soluto/m.solução), no soro caseiro, em sal de cozinha, é de 3,5 %.

11. UDESC - Quando um soluto não volátil é adicionado a um determinado solvente puro, uma solução é formada e suas propriedades físico-químicas podem ser alteradas. Este fenômeno é denominado efeito coligativo das soluções.

Considere estes efeitos e analise as proposições.

- I. O abaixamento da pressão máxima de vapor de um líquido faz com que este tenha um maior ponto de ebulição. Tal fato é possível quando uma colher de sopa de açúcar (sacarose) é adicionada a uma panela contendo 1 litro de água, por exemplo. Este fenômeno é conhecido como ebulioscopia ou ebuliometria.
- II. Uma tática interessante para acelerar o resfriamento de bebidas consiste na adição de sal de cozinha ao recipiente com gelo em que elas estão imersas. Neste caso, o efeito crioscópico está presente. Considerando um número idêntico de mols de cloreto de sódio e brometo de magnésio em experimentos distintos, o efeito coligativo resultante será o mesmo, pois este independe da natureza da substância utilizada.

III. A pressão osmótica do sangue humano é da ordem de 7,8 atm devido às substâncias nele dissolvidas. Desta forma, é fundamental que, ao se administrar uma determinada solução contendo um medicamento via intravenosa, a pressão osmótica deste último seja hipotônica em relação à da corrente sanguínea, sob o risco de que as hemácias possam se romper ao absorverem um excesso de partículas administradas.

Assinale a alternativa correta.

- a) Somente a afirmativa I é verdadeira.
- b) Somente as afirmativas I e III são verdadeiras.
- c) Somente as afirmativas I e II são verdadeiras.
- d) Somente as afirmativas II e III são verdadeiras.
- e) Somente a afirmativa III é verdadeira.

12. UNIFESO - 6,0 g de ácido etanoico foram dissolvidos em água destilada suficiente para completar 300 mL de solução. Na solução produzida, que foi mantida a 25°C, o ácido ficou 3% ionizado.

As concentrações, em mol.L⁻¹, dos íons CH₃COO⁻ e OH⁻ na solução preparada são, respectivamente, iguais a

a) 1,0 x 10⁻² e 1,0 x 10⁻¹²

d) 1.0×10^{-3} e 1.0×10^{-11}

b) 3,3 x 10⁻¹ e 3,0 x 10⁻¹⁴ c) 1,0 x 10⁻⁵ e 1,0 x 10⁻⁹

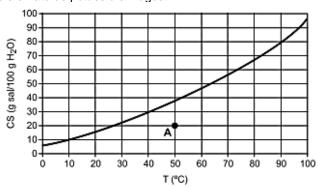
e) 6.0×10^{-1} e 1.7×10^{-14}

13. UNIOESTE - No controle de qualidade de uma fábrica de refrigerante, geralmente determina-se o teor de ácido cítrico (C₆H₈O₇, MM = 192 g mol⁻¹) por uma titulação de neutralização com hidróxido de sódio (NaOH, MM = 40 g mol⁻¹). Nesta

com hidróxido de sódio (NaOH, MM = 40 g mol⁻¹). Nesta titulação, foram gastos 21,00 mL de determinada solução padrão de NaOH (0,10mol L⁻¹), para titular 100 mL de refrigerante.

$$C_6H_8O_7(aq) + 3 \text{ NaOH } (aq) \rightarrow 3 H_2O(l) + \text{Na}_3C_6H_5O_7(aq)$$

De acordo com as informações apresentadas acima, podemos AFIRMAR que a concentração molar de ácido presente nos 100 mL deste refrigerante é de


a) 2,1 x 10-2 mol L⁻¹ c) 7,0 x 10-3 mol L⁻¹ e) 0,40 mol L⁻¹

b) 2,1 x 10-2 mol L⁻¹ d) 0,13 mol L⁻¹

14. UDESC - Considere a determinação da capacidade antiácida de um medicamento cujo princípio ativo é carbonato de sódio, que pode ser feita pela reação com ácido clorídrico. Um comprimido de 1,8656 g foi triturado e dissolvido em água, necessitando de 22,00 mL de HCl 0,4000 mol L-1 para ser completamente neutralizado. Assinale a alternativa que corresponde à porcentagem em massa de carbonato de sódio no comprimido.

a) 12,50 % b) 19,57 % c) 25,00 % d) 14,15 % e) 50,00 %

15. FGV - O gráfico mostra a curva de solubilidade do sal dicromato de potássio em água.

Uma solução aquosa de dicromato de potássio, quando resfriada a 40 °C, formou 240 g de sal cristalizado. Se essa mesma solução fosse resfriada a 10 °C, teria formado 340 g de sal cristalizado. Considerando-se que a cristalização é completa nas temperaturas examinadas, pode-se afirmar que a massa dessa solução de dicromato de potássio é igual a:

a) 1000 g b) 950 g c) 890 g d) 800 g e) 315 g